segunda-feira, 18 de agosto de 2014

A MOLA VARIÁVEL DE GRACELI.



1- f [x] = Φ * pP* LONG - LOGX/X* θ [N] 2 / LOGY/Y * LOG [a, R,0]/ R /t, 
2- f [x] = Φ * pP *LAT- LOGX/X [N] 2 / LOGY/Y * LOG θ/θ [a, R,0] [n]/ R /t
3- f [x] = Φ * pP *ALT- LOGX/X [N] 2 / LOGY/Y * LOG [a, R,0]/ R /t
4- f [x] = Φ * pP - LOGX/X[ N] 2 / LOGY/Y  *ALT* LOG [a, R,0]/ R /t
5- f [x] = Φ * pP - LOGX/X[ N] 2 / LOGY/Y * LOG [a, R,0]*LAT/ R /t

6- f [x] = Φ * pP* LONG - LOGX/X[ N] 2 / LOGY/Y * LOG [a, R,0]/ R /t, 
7- f [x] = Φ * pP* LONG - LOGX/X [N] 2 / LOGY/Y * LOG [a, R,0]*ALT/ R /t, [N.....]
8 f [x] = Φ * pP* LONG - LOGX/X* θ [N] 2 / LOGY/Y * LOG [a, R,0]/ R /t, 
9- f [x] = Φ * pP *LAT- LOGX/X [N] 2 / LOGY/Y * LOG θ/θ [a, R,0] [n]/ R /t
10- f [x] = Φ * pP *ALT- LOGX/X [N] 2 / LOGY/Y * LOG [a, R,0]/ R /t
11- f [x] = Φ * pP - LOGX/X[ N] 2 / LOGY/Y  *ALT* LOG [a, R,0]/ R /t
12- f [x] = Φ * pP - LOGX/X[ N] 2 / LOGY/Y * LOG [a, R,0]*LAT/ R /t

13- f [x] = Φ * pP* LONG - LOG LOG θ/ LOGX/X* θ [N ]
[ N] 2 / LOGY/Y * LOG [a, R,0]/ R /t, 


14- f [x] = Φ * pP* LONG - LOGX/X [N] 2 / LOGY/Y * LOG [a, R,0]*ALT/ R /t, [N.....]



LONGITUDE, LATITUDE, ALTURA..



R = NÚMEROS REAIS.

Nenhum comentário:

Postar um comentário